Logo

SQL Server LOGITPROB Function

Updated 2023-11-01 20:52:29.500000

Description

Use theaggregate function LOGITPROB to calculate the probability that Y = 1 given a set of coefficients from a logistic regression and a set of x-values. The probability is estimated as:

p = \hat{\pi} = \frac{e^{\beta_0 + \beta_1x_1+...+\beta_nx_n}}{1 + e^{\beta_0 + \beta_1x_1 + ... +\beta_nx_n}

The coefficients and x-values are passed into the function as pairs, which requires passing a 1 (for the intercept) into the function for ß0 coefficient.

Syntax

SELECT [westclintech].[wct].[LOGITPROB] (
  <@B, float,> 
 ,<@x, float,>)

Arguments

@B

the coefficients from a logit regression. @B must be of the type float or of a type that implicitly converts to float.

@x

the x-value associated with coefficient. @x should be consistent with the independent variables used in the logit regression. @x must be of the type float or of a type that implicitly converts to float.

Return Type

float

Remarks

You should pass a 1 with the ß0 coefficient.

Examples

We will run a logistic regression on the following data and then compare the observed y-value to the predicted y-value using the LOGITPROB function. We will use the LOGITSUM function to calculate the coefficients.

TempWaterMaleFemale
200210
210906
2209123
2306173
2401141
250428
201184
211759
2216821
2315965
2411746
251722
--Put the data into a table
SELECT IDENTITY(INT, 1, 1) as rn,
       *,
       male / CAST(male + female as float) as y_obs
INTO   #t
  FROM (   VALUES (20, 0, 21, 0),
                  (21, 0, 90, 6),
                  (22, 0, 91, 23),
                  (23, 0, 61, 73),
                  (24, 0, 11, 41),
                  (25, 0, 4, 28),
                  (20, 1, 18, 4),
                  (21, 1, 75, 9),
                  (22, 1, 68, 21),
                  (23, 1, 59, 65),
                  (24, 1, 17, 46),
                  (25, 1, 7, 22)) n (temp, water, male, female);

--Perform the regression
SELECT *
INTO   #coef
  FROM wct.LOGITSUM('SELECT temp,water,male,female FROM #T', 3, 4);

--Put the new x-values into 3rd normal form
SELECT #t.rn,
       n.idx,
       n.x
INTO   #newx
  FROM #t
 CROSS APPLY (   VALUES (0, 1),
                        (1, temp),
                        (2, water)) n (idx, x);

--Calculate the predicted y-values and compare
--to the observed y-values
SELECT t.temp,
       t.water,
       t.y_obs,
       wct.LOGITPROB(a.stat_val, b.x) as y_pred
  FROM #newx b
  JOIN #coef a
    ON b.idx = a.idx
  JOIN #t t
    ON b.rn  = t.rn
 WHERE a.stat_name = 'b'
 GROUP BY b.rn,
          t.temp,
          t.water,
          t.y_obs
 ORDER BY b.rn;

This produces the following result.

tempwatery_obsy_pred
20010.962666164888472
2100.93750.898550857816897
2200.7982456140350880.752621841432599
2300.4552238805970150.511014157141803
2400.2115384615384620.264148436577182
2500.1250.109769453268386
2010.8181818181818180.961211464524059
2110.8928571428571430.89487074873382
2210.7640449438202250.745149498986974
2310.4758064516129030.501081697117896
2410.269841269841270.25649731606484
2510.2413793103448280.105946142147757

Using the data from Example #2 in the LOGIT documentation as input into a table called #mydata, we calculate the coefficients using the following the SQL which stores the results in table called #mylogit.

SELECT *
INTO   #mydata
  FROM (   VALUES (1, 0, 380, 3.61, 3),
                  (2, 1, 660, 3.67, 3),
                  (3, 1, 800, 4, 1),
                  (4, 1, 640, 3.19, 4),
                  (5, 0, 520, 2.93, 4),
                  (6, 1, 760, 3, 2),
                  (7, 1, 560, 2.98, 1),
                  (8, 0, 400, 3.08, 2),
                  (9, 1, 540, 3.39, 3),
                  (10, 0, 700, 3.92, 2),
                  (11, 0, 800, 4, 4),
                  (12, 0, 440, 3.22, 1),
                  (13, 1, 760, 4, 1),
                  (14, 0, 700, 3.08, 2),
                  (15, 1, 700, 4, 1),
                  (16, 0, 480, 3.44, 3),
                  (17, 0, 780, 3.87, 4),
                  (18, 0, 360, 2.56, 3),
                  (19, 0, 800, 3.75, 2),
                  (20, 1, 540, 3.81, 1),
                  (21, 0, 500, 3.17, 3),
                  (22, 1, 660, 3.63, 2),
                  (23, 0, 600, 2.82, 4),
                  (24, 0, 680, 3.19, 4),
                  (25, 1, 760, 3.35, 2),
                  (26, 1, 800, 3.66, 1),
                  (27, 1, 620, 3.61, 1),
                  (28, 1, 520, 3.74, 4),
                  (29, 1, 780, 3.22, 2),
                  (30, 0, 520, 3.29, 1),
                  (31, 0, 540, 3.78, 4),
                  (32, 0, 760, 3.35, 3),
                  (33, 0, 600, 3.4, 3),
                  (34, 1, 800, 4, 3),
                  (35, 0, 360, 3.14, 1),
                  (36, 0, 400, 3.05, 2),
                  (37, 0, 580, 3.25, 1),
                  (38, 0, 520, 2.9, 3),
                  (39, 1, 500, 3.13, 2),
                  (40, 1, 520, 2.68, 3),
                  (41, 0, 560, 2.42, 2),
                  (42, 1, 580, 3.32, 2),
                  (43, 1, 600, 3.15, 2),
                  (44, 0, 500, 3.31, 3),
                  (45, 0, 700, 2.94, 2),
                  (46, 1, 460, 3.45, 3),
                  (47, 1, 580, 3.46, 2),
                  (48, 0, 500, 2.97, 4),
                  (49, 0, 440, 2.48, 4),
                  (50, 0, 400, 3.35, 3),
                  (51, 0, 640, 3.86, 3),
                  (52, 0, 440, 3.13, 4),
                  (53, 0, 740, 3.37, 4),
                  (54, 1, 680, 3.27, 2),
                  (55, 0, 660, 3.34, 3),
                  (56, 1, 740, 4, 3),
                  (57, 0, 560, 3.19, 3),
                  (58, 0, 380, 2.94, 3),
                  (59, 0, 400, 3.65, 2),
                  (60, 0, 600, 2.82, 4),
                  (61, 1, 620, 3.18, 2),
                  (62, 0, 560, 3.32, 4),
                  (63, 0, 640, 3.67, 3),
                  (64, 1, 680, 3.85, 3),
                  (65, 0, 580, 4, 3),
                  (66, 0, 600, 3.59, 2),
                  (67, 0, 740, 3.62, 4),
                  (68, 0, 620, 3.3, 1),
                  (69, 0, 580, 3.69, 1),
                  (70, 0, 800, 3.73, 1),
                  (71, 0, 640, 4, 3),
                  (72, 0, 300, 2.92, 4),
                  (73, 0, 480, 3.39, 4),
                  (74, 0, 580, 4, 2),
                  (75, 0, 720, 3.45, 4),
                  (76, 0, 720, 4, 3),
                  (77, 0, 560, 3.36, 3),
                  (78, 1, 800, 4, 3),
                  (79, 0, 540, 3.12, 1),
                  (80, 1, 620, 4, 1),
                  (81, 0, 700, 2.9, 4),
                  (82, 0, 620, 3.07, 2),
                  (83, 0, 500, 2.71, 2),
                  (84, 0, 380, 2.91, 4),
                  (85, 1, 500, 3.6, 3),
                  (86, 0, 520, 2.98, 2),
                  (87, 0, 600, 3.32, 2),
                  (88, 0, 600, 3.48, 2),
                  (89, 0, 700, 3.28, 1),
                  (90, 1, 660, 4, 2),
                  (91, 0, 700, 3.83, 2),
                  (92, 1, 720, 3.64, 1),
                  (93, 0, 800, 3.9, 2),
                  (94, 0, 580, 2.93, 2),
                  (95, 1, 660, 3.44, 2),
                  (96, 0, 660, 3.33, 2),
                  (97, 0, 640, 3.52, 4),
                  (98, 0, 480, 3.57, 2),
                  (99, 0, 700, 2.88, 2),
                  (100, 0, 400, 3.31, 3),
                  (101, 0, 340, 3.15, 3),
                  (102, 0, 580, 3.57, 3),
                  (103, 0, 380, 3.33, 4),
                  (104, 0, 540, 3.94, 3),
                  (105, 1, 660, 3.95, 2),
                  (106, 1, 740, 2.97, 2),
                  (107, 1, 700, 3.56, 1),
                  (108, 0, 480, 3.13, 2),
                  (109, 0, 400, 2.93, 3),
                  (110, 0, 480, 3.45, 2),
                  (111, 0, 680, 3.08, 4),
                  (112, 0, 420, 3.41, 4),
                  (113, 0, 360, 3, 3),
                  (114, 0, 600, 3.22, 1),
                  (115, 0, 720, 3.84, 3),
                  (116, 0, 620, 3.99, 3),
                  (117, 1, 440, 3.45, 2),
                  (118, 0, 700, 3.72, 2),
                  (119, 1, 800, 3.7, 1),
                  (120, 0, 340, 2.92, 3),
                  (121, 1, 520, 3.74, 2),
                  (122, 1, 480, 2.67, 2),
                  (123, 0, 520, 2.85, 3),
                  (124, 0, 500, 2.98, 3),
                  (125, 0, 720, 3.88, 3),
                  (126, 0, 540, 3.38, 4),
                  (127, 1, 600, 3.54, 1),
                  (128, 0, 740, 3.74, 4),
                  (129, 0, 540, 3.19, 2),
                  (130, 0, 460, 3.15, 4),
                  (131, 1, 620, 3.17, 2),
                  (132, 0, 640, 2.79, 2),
                  (133, 0, 580, 3.4, 2),
                  (134, 0, 500, 3.08, 3),
                  (135, 0, 560, 2.95, 2),
                  (136, 0, 500, 3.57, 3),
                  (137, 0, 560, 3.33, 4),
                  (138, 0, 700, 4, 3),
                  (139, 0, 620, 3.4, 2),
                  (140, 1, 600, 3.58, 1),
                  (141, 0, 640, 3.93, 2),
                  (142, 1, 700, 3.52, 4),
                  (143, 0, 620, 3.94, 4),
                  (144, 0, 580, 3.4, 3),
                  (145, 0, 580, 3.4, 4),
                  (146, 0, 380, 3.43, 3),
                  (147, 0, 480, 3.4, 2),
                  (148, 0, 560, 2.71, 3),
                  (149, 1, 480, 2.91, 1),
                  (150, 0, 740, 3.31, 1),
                  (151, 1, 800, 3.74, 1),
                  (152, 0, 400, 3.38, 2),
                  (153, 1, 640, 3.94, 2),
                  (154, 0, 580, 3.46, 3),
                  (155, 0, 620, 3.69, 3),
                  (156, 1, 580, 2.86, 4),
                  (157, 0, 560, 2.52, 2),
                  (158, 1, 480, 3.58, 1),
                  (159, 0, 660, 3.49, 2),
                  (160, 0, 700, 3.82, 3),
                  (161, 0, 600, 3.13, 2),
                  (162, 0, 640, 3.5, 2),
                  (163, 1, 700, 3.56, 2),
                  (164, 0, 520, 2.73, 2),
                  (165, 0, 580, 3.3, 2),
                  (166, 0, 700, 4, 1),
                  (167, 0, 440, 3.24, 4),
                  (168, 0, 720, 3.77, 3),
                  (169, 0, 500, 4, 3),
                  (170, 0, 600, 3.62, 3),
                  (171, 0, 400, 3.51, 3),
                  (172, 0, 540, 2.81, 3),
                  (173, 0, 680, 3.48, 3),
                  (174, 1, 800, 3.43, 2),
                  (175, 0, 500, 3.53, 4),
                  (176, 1, 620, 3.37, 2),
                  (177, 0, 520, 2.62, 2),
                  (178, 1, 620, 3.23, 3),
                  (179, 0, 620, 3.33, 3),
                  (180, 0, 300, 3.01, 3),
                  (181, 0, 620, 3.78, 3),
                  (182, 0, 500, 3.88, 4),
                  (183, 0, 700, 4, 2),
                  (184, 1, 540, 3.84, 2),
                  (185, 0, 500, 2.79, 4),
                  (186, 0, 800, 3.6, 2),
                  (187, 0, 560, 3.61, 3),
                  (188, 0, 580, 2.88, 2),
                  (189, 0, 560, 3.07, 2),
                  (190, 0, 500, 3.35, 2),
                  (191, 1, 640, 2.94, 2),
                  (192, 0, 800, 3.54, 3),
                  (193, 0, 640, 3.76, 3),
                  (194, 0, 380, 3.59, 4),
                  (195, 1, 600, 3.47, 2),
                  (196, 0, 560, 3.59, 2),
                  (197, 0, 660, 3.07, 3),
                  (198, 1, 400, 3.23, 4),
                  (199, 0, 600, 3.63, 3),
                  (200, 0, 580, 3.77, 4),
                  (201, 0, 800, 3.31, 3),
                  (202, 1, 580, 3.2, 2),
                  (203, 1, 700, 4, 1),
                  (204, 0, 420, 3.92, 4),
                  (205, 1, 600, 3.89, 1),
                  (206, 1, 780, 3.8, 3),
                  (207, 0, 740, 3.54, 1),
                  (208, 1, 640, 3.63, 1),
                  (209, 0, 540, 3.16, 3),
                  (210, 0, 580, 3.5, 2),
                  (211, 0, 740, 3.34, 4),
                  (212, 0, 580, 3.02, 2),
                  (213, 0, 460, 2.87, 2),
                  (214, 0, 640, 3.38, 3),
                  (215, 1, 600, 3.56, 2),
                  (216, 1, 660, 2.91, 3),
                  (217, 0, 340, 2.9, 1),
                  (218, 1, 460, 3.64, 1),
                  (219, 0, 460, 2.98, 1),
                  (220, 1, 560, 3.59, 2),
                  (221, 0, 540, 3.28, 3),
                  (222, 0, 680, 3.99, 3),
                  (223, 1, 480, 3.02, 1),
                  (224, 0, 800, 3.47, 3),
                  (225, 0, 800, 2.9, 2),
                  (226, 1, 720, 3.5, 3),
                  (227, 0, 620, 3.58, 2),
                  (228, 0, 540, 3.02, 4),
                  (229, 0, 480, 3.43, 2),
                  (230, 1, 720, 3.42, 2),
                  (231, 0, 580, 3.29, 4),
                  (232, 0, 600, 3.28, 3),
                  (233, 0, 380, 3.38, 2),
                  (234, 0, 420, 2.67, 3),
                  (235, 1, 800, 3.53, 1),
                  (236, 0, 620, 3.05, 2),
                  (237, 1, 660, 3.49, 2),
                  (238, 0, 480, 4, 2),
                  (239, 0, 500, 2.86, 4),
                  (240, 0, 700, 3.45, 3),
                  (241, 0, 440, 2.76, 2),
                  (242, 1, 520, 3.81, 1),
                  (243, 1, 680, 2.96, 3),
                  (244, 0, 620, 3.22, 2),
                  (245, 0, 540, 3.04, 1),
                  (246, 0, 800, 3.91, 3),
                  (247, 0, 680, 3.34, 2),
                  (248, 0, 440, 3.17, 2),
                  (249, 0, 680, 3.64, 3),
                  (250, 0, 640, 3.73, 3),
                  (251, 0, 660, 3.31, 4),
                  (252, 0, 620, 3.21, 4),
                  (253, 1, 520, 4, 2),
                  (254, 1, 540, 3.55, 4),
                  (255, 1, 740, 3.52, 4),
                  (256, 0, 640, 3.35, 3),
                  (257, 1, 520, 3.3, 2),
                  (258, 1, 620, 3.95, 3),
                  (259, 0, 520, 3.51, 2),
                  (260, 0, 640, 3.81, 2),
                  (261, 0, 680, 3.11, 2),
                  (262, 0, 440, 3.15, 2),
                  (263, 1, 520, 3.19, 3),
                  (264, 1, 620, 3.95, 3),
                  (265, 1, 520, 3.9, 3),
                  (266, 0, 380, 3.34, 3),
                  (267, 0, 560, 3.24, 4),
                  (268, 1, 600, 3.64, 3),
                  (269, 1, 680, 3.46, 2),
                  (270, 0, 500, 2.81, 3),
                  (271, 1, 640, 3.95, 2),
                  (272, 0, 540, 3.33, 3),
                  (273, 1, 680, 3.67, 2),
                  (274, 0, 660, 3.32, 1),
                  (275, 0, 520, 3.12, 2),
                  (276, 1, 600, 2.98, 2),
                  (277, 0, 460, 3.77, 3),
                  (278, 1, 580, 3.58, 1),
                  (279, 1, 680, 3, 4),
                  (280, 1, 660, 3.14, 2),
                  (281, 0, 660, 3.94, 2),
                  (282, 0, 360, 3.27, 3),
                  (283, 0, 660, 3.45, 4),
                  (284, 0, 520, 3.1, 4),
                  (285, 1, 440, 3.39, 2),
                  (286, 0, 600, 3.31, 4),
                  (287, 1, 800, 3.22, 1),
                  (288, 1, 660, 3.7, 4),
                  (289, 0, 800, 3.15, 4),
                  (290, 0, 420, 2.26, 4),
                  (291, 1, 620, 3.45, 2),
                  (292, 0, 800, 2.78, 2),
                  (293, 0, 680, 3.7, 2),
                  (294, 0, 800, 3.97, 1),
                  (295, 0, 480, 2.55, 1),
                  (296, 0, 520, 3.25, 3),
                  (297, 0, 560, 3.16, 1),
                  (298, 0, 460, 3.07, 2),
                  (299, 0, 540, 3.5, 2),
                  (300, 0, 720, 3.4, 3),
                  (301, 0, 640, 3.3, 2),
                  (302, 1, 660, 3.6, 3),
                  (303, 1, 400, 3.15, 2),
                  (304, 1, 680, 3.98, 2),
                  (305, 0, 220, 2.83, 3),
                  (306, 0, 580, 3.46, 4),
                  (307, 1, 540, 3.17, 1),
                  (308, 0, 580, 3.51, 2),
                  (309, 0, 540, 3.13, 2),
                  (310, 0, 440, 2.98, 3),
                  (311, 0, 560, 4, 3),
                  (312, 0, 660, 3.67, 2),
                  (313, 0, 660, 3.77, 3),
                  (314, 1, 520, 3.65, 4),
                  (315, 0, 540, 3.46, 4),
                  (316, 1, 300, 2.84, 2),
                  (317, 1, 340, 3, 2),
                  (318, 1, 780, 3.63, 4),
                  (319, 1, 480, 3.71, 4),
                  (320, 0, 540, 3.28, 1),
                  (321, 0, 460, 3.14, 3),
                  (322, 0, 460, 3.58, 2),
                  (323, 0, 500, 3.01, 4),
                  (324, 0, 420, 2.69, 2),
                  (325, 0, 520, 2.7, 3),
                  (326, 0, 680, 3.9, 1),
                  (327, 0, 680, 3.31, 2),
                  (328, 1, 560, 3.48, 2),
                  (329, 0, 580, 3.34, 2),
                  (330, 0, 500, 2.93, 4),
                  (331, 0, 740, 4, 3),
                  (332, 0, 660, 3.59, 3),
                  (333, 0, 420, 2.96, 1),
                  (334, 0, 560, 3.43, 3),
                  (335, 1, 460, 3.64, 3),
                  (336, 1, 620, 3.71, 1),
                  (337, 0, 520, 3.15, 3),
                  (338, 0, 620, 3.09, 4),
                  (339, 0, 540, 3.2, 1),
                  (340, 1, 660, 3.47, 3),
                  (341, 0, 500, 3.23, 4),
                  (342, 1, 560, 2.65, 3),
                  (343, 0, 500, 3.95, 4),
                  (344, 0, 580, 3.06, 2),
                  (345, 0, 520, 3.35, 3),
                  (346, 0, 500, 3.03, 3),
                  (347, 0, 600, 3.35, 2),
                  (348, 0, 580, 3.8, 2),
                  (349, 0, 400, 3.36, 2),
                  (350, 0, 620, 2.85, 2),
                  (351, 1, 780, 4, 2),
                  (352, 0, 620, 3.43, 3),
                  (353, 1, 580, 3.12, 3),
                  (354, 0, 700, 3.52, 2),
                  (355, 1, 540, 3.78, 2),
                  (356, 1, 760, 2.81, 1),
                  (357, 0, 700, 3.27, 2),
                  (358, 0, 720, 3.31, 1),
                  (359, 1, 560, 3.69, 3),
                  (360, 0, 720, 3.94, 3),
                  (361, 1, 520, 4, 1),
                  (362, 1, 540, 3.49, 1),
                  (363, 0, 680, 3.14, 2),
                  (364, 0, 460, 3.44, 2),
                  (365, 1, 560, 3.36, 1),
                  (366, 0, 480, 2.78, 3),
                  (367, 0, 460, 2.93, 3),
                  (368, 0, 620, 3.63, 3),
                  (369, 0, 580, 4, 1),
                  (370, 0, 800, 3.89, 2),
                  (371, 1, 540, 3.77, 2),
                  (372, 1, 680, 3.76, 3),
                  (373, 1, 680, 2.42, 1),
                  (374, 1, 620, 3.37, 1),
                  (375, 0, 560, 3.78, 2),
                  (376, 0, 560, 3.49, 4),
                  (377, 0, 620, 3.63, 2),
                  (378, 1, 800, 4, 2),
                  (379, 0, 640, 3.12, 3),
                  (380, 0, 540, 2.7, 2),
                  (381, 0, 700, 3.65, 2),
                  (382, 1, 540, 3.49, 2),
                  (383, 0, 540, 3.51, 2),
                  (384, 0, 660, 4, 1),
                  (385, 1, 480, 2.62, 2),
                  (386, 0, 420, 3.02, 1),
                  (387, 1, 740, 3.86, 2),
                  (388, 0, 580, 3.36, 2),
                  (389, 0, 640, 3.17, 2),
                  (390, 0, 640, 3.51, 2),
                  (391, 1, 800, 3.05, 2),
                  (392, 1, 660, 3.88, 2),
                  (393, 1, 600, 3.38, 3),
                  (394, 1, 620, 3.75, 2),
                  (395, 1, 460, 3.99, 3),
                  (396, 0, 620, 4, 2),
                  (397, 0, 560, 3.04, 3),
                  (398, 0, 460, 2.63, 2),
                  (399, 0, 700, 3.65, 2),
                  (400, 0, 600, 3.89, 3)) n (rn, admit, gre, gpa, [rank]);

SELECT *
INTO   #mylogit
  FROM wct.LOGIT(
           'SELECT
    admit
   ,gre
   ,gpa
   ,CASE RANK
       WHEN 2 THEN 1
       ELSE 0
    END
   ,CASE RANK
       WHEN 3 THEN 1
       ELSE 0
    END
   ,CASE RANK
       WHEN 4 THEN 1
       ELSE 0
    END
   FROM
       #mydata',
           1);

Remember that gre and gpa as treated as continuous data while rank has been treated as discrete data. The possible values for rank are 1, 2, 3, 4.

We calculate the predicted probability of admission at each value of rank by holding gre and gpa at their means.

SELECT ROUND(n.gre, 0) as gre,
       ROUND(n.gpa, 2) as gpa,
       n.rank,
       ROUND(wct.LOGITPROB(b.stat_val, x.x), 3) as y_pred
  FROM (   SELECT AVG(cast(gre as float)) as gre,
                  AVG(cast(gpa as float)) as gpa,
                  k.SeriesValue as [rank],
                  CASE k.SeriesValue
                       WHEN 2 THEN 1
                       ELSE 0 END as rank2,
                  CASE k.SeriesValue
                       WHEN 3 THEN 1
                       ELSE 0 END as rank3,
                  CASE k.SeriesValue
                       WHEN 4 THEN 1
                       ELSE 0 END as rank4
             FROM #mydata
            CROSS APPLY wct.SeriesInt(1, 4, NULL, NULL, NULL) k
            GROUP BY k.SeriesValue) n
 CROSS APPLY (   VALUES (0, 1),
                        (1, gre),
                        (2, gpa),
                        (3, rank2),
                        (4, rank3),
                        (5, rank4)) x (idx, x)
  JOIN #mylogit b
    ON x.idx = b.idx
 WHERE b.stat_name = 'b'
 GROUP BY n.gre,
          n.gpa,
          n.rank;

This produces the following result.

gregparanky_pred
5883.3910.517
5883.3920.352
5883.3930.219
5883.3940.185

We can see from the above output that the predicted probability of success is 0.517 when the rank is 1 and 0.185 when the rank is 4 holding gre and gpa at their means.

See Also

LINEST - the Ordinary Least Squares (OLS) solution for a series of x-values and y-values

LOGEST - Logarithmic regression

LOGIT - Logit regression

LOGITPRED - Calculate predicted values based on a logit regression

LOGITSUM - Logit regression using summary data

VIF - Variance inflation factors