SQL Server PRICE Function
Updated 2024-02-28 20:42:43.407000
Description
Use the scalar function PRICE to calculate the price for a security that pays periodic interest and has a par value of 100. The formula for price with more than one coupon period to redemption is:
PRICE=\ \left(\frac{\frac{-C}{Y}+RV}{\left(1+Y\right)^N}-\frac{-C}{Y}\right)\ast{(1+Y)}^{1-\frac{DSC}{E}}-A
Where
C = 100 * coupon rate / frequency
Y = yield / frequency
RV = redemption value
DSC = number of days from settlement to coupon
N = the number of coupons between the settlement date and the maturity date
E = the number of days in the current coupon period
A = C * accrued days / E
When the settlement date is greater than or equal to the last coupon date, the formula for price is:
PRICE=\ \frac{RV+C}{1+\ \left(Y\ast\ \frac{DSR}{E}\right)}-A
Where
C = 100 * coupon rate / frequency
Y = yield / frequency
RV = redemption value
DSR = number of days from settlement to redemption
E = the number of days in the current coupon period
A = C * accrued days / E
Syntax
SELECT [westclintech].[wct].[PRICE] (
<@Settlement, datetime,>
,<@Maturity, datetime,>
,<@Rate, float,>
,<@Yld, float,>
,<@Redemption, float,>
,<@Frequency, float,>
,<@Basis, nvarchar(4000),>)
Arguments
@Settlement
the settlement date of the security. @Settlement is an expression that returns a datetime or smalldatetime value, or a character string in date format.
@Maturity
the maturity date of the security. @Maturity is an expression that returns a datetime or smalldatetime value, or a character string in date format.
@Rate
the security's annual coupon rate. @Rate is an expression of type float or of a type that can be implicitly converted to float.
@Yld
the security's annual yield. @Yld is an expression of type float or of a type that can be implicitly converted to float.
@Redemption
the security's redemption value per 100 face value. @Redemption is an expression of type float or of a type that can be implicitly converted to float.
@Frequency
the number of coupon payments per year. For annual payments, @Frequency = 1; for semi-annual, @Frequency = 2; for quarterly, @Frequency = 4; for bimonthly @Frequency = 6; for monthly, @Frequency = 12. For bonds with @Basis = 'A/364' or 9, you can enter 364 for payments made every 52 weeks, 182 for payments made every 26 weeks, 91 for payments made every 13 weeks, 28 for payments made every 4 weeks, 14 for payments made every 2 weeks, and 7 for weekly payments. @Frequency is an expression of type float or of a type that can be implicitly converted to float.
@Basis
is the type of day count to use. @Basis is an expression of the character string data type category.
| @Basis | Day count basis |
|---|---|
| 0 , 'BOND' | US (NASD) 30/360 |
| 1 , 'ACTUAL' | Actual/Actual |
| 2 , 'A360' | Actual/360 |
| 3 , 'A365' | Actual/365 |
| 4 , '30E/360 (ISDA)' , '30E/360' , 'ISDA' , '30E/360 ISDA' , 'EBOND' | European 30/360 |
| 5 , '30/360' , '30/360 ISDA' , 'GERMAN' | 30/360 ISDA |
| 6 , 'NL/ACT' | No Leap Year/ACT |
| 7 , 'NL/365' | No Leap Year /365 |
| 8 , 'NL/360' | No Leap Year /360 |
| 9 , 'A/364' | Actual/364 |
| 10 , 'BOND NON-EOM' | US (NASD) 30/360 non-end-of-month |
| 11 , 'ACTUAL NON-EOM' | Actual/Actual non-end-of-month |
| 12 , 'A360 NON-EOM' | Actual/360 non-end-of-month |
| 13 , 'A365 NON-EOM' | Actual/365 non-end-of-month |
| 14 , '30E/360 NON-EOM' , '30E/360 ICMA NON-EOM' , 'EBOND NON-EOM' | European 30/360 non-end-of-month |
| 15 , '30/360 NON-EOM' , '30/360 ISDA NON-EOM' , 'GERMAN NON-EOM' | 30/360 ISDA non-end-of-month |
| 16 , 'NL/ACT NON-EOM' | No Leap Year/ACT non-end-of-month |
| 17 , 'NL/365 NON-EOM' | No Leap Year/365 non-end-of-month |
| 18 , 'NL/360 NON-EOM' | No Leap Year/360 non-end-of-month |
| 19 , 'A/364 NON-EOM' | Actual/364 non-end-of-month |
Return Type
float
Remarks
If @Settlement is NULL then @Settlement = GETDATE().
If @Maturity is NULL then @Maturity = GETDATE().
If @Rate is NULL then @Rate = 0.
If @Yield is NULL then @Yield = 0.
If @Redemption is NULL then @Redemption = 100.
If @Frequency is NULL then @Frequency = 2.
If @Basis is NULL then @Basis = 0.
If @Frequency is any number other than 1, 2, 4, 6 or 12, or for @Basis = 'A/364' any number other than 1, 2, 4, 6 or 12 as well as 7, 14, 28, 91, 182 or 364 PRICE returns an error.
If @Basis is invalid (see above list), PRICE returns an error.
Examples
In this example we calculate the price for a bond maturing on 2034-06-15. The settlement date is 2014-05-01, the yield is 2.76%, the coupon rate is 2.50%, the redemption value is 100, the coupon is paid twice-yearly, and the basis code is 1.
SELECT wct.PRICE( '2014-05-01', --@Settlement
'2034-06-15', --@Maturity
0.025, --@Rate
0.0276, --@Yield
100, --@Redemption
2, --@Frequency
1 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 96.0043799057024 |
In this example, we calculate the price of a zero-coupon bond.
SELECT wct.PRICE( '2014-05-01', --@Settlement
'2044-06-15', --@Maturity
0.00, --@Rate
0.0301, --@Yield
100, --@Redemption
2, --@Frequency
1 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 40.6583576113141 |
In this example we calculate the price of a bond settling in the final coupon period.
SELECT wct.PRICE( '2014-05-01', --@Settlement
'2014-07-15', --@Maturity
0.0190, --@Rate
0.0005, --@Yield
100, --@Redemption
2, --@Frequency
0 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 100.380181205142 |
Here we calculate the price of a bond maturing on the 30 th of September 2034, with semi-annual coupons payable on March 30 th and September 30 th .
SELECT wct.PRICE( '2014-05-01', --@Settlement
'2034-09-30', --@Maturity
0.0257, --@Rate
0.0269, --@Yield
100, --@Redemption
2, --@Frequency
11 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 98.1232907936385 |
Here's an example of the price calculation with a negative yield.
SELECT wct.PRICE( '2014-05-01', --@Settlement
'2014-09-30', --@Maturity
0.0257, --@Rate
-0.046219, --@Yield
98, --@Redemption
2, --@Frequency
0 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 101.000010706758 |
This is an example of a bond paying interest every 26 weeks.
SELECT wct.PRICE( '2014-10-01', --@Settlement
'2023-03-13', --@Maturity
0.1250, --@Rate
0.1100, --@Yield
100, --@Redemption
182, --@Frequency
9 --@Basis
) as PRICE;
This produces the following result.
| PRICE |
|---|
| 108.126105929164 |
See Also
PRICEDISC - Price of a discount security
PRICEMAT - Price of an interest-at-maturity security
PRICESTEP - Calculate the Price of a security with step-up rates
ODDFPRICE - Price of a security with an odd first coupon
ODDLPRICE - Price of a bond with an odd last coupon
OFLPRICE - Price of a security with an odd last coupon.
DURATION - Duration of a bond paying regular, periodic interest
MDURATION - Modified duration on a bond paying regular, periodic interest
CONVEXITY - Convexity of a bond
BONDAMORT - Bond amortization schedule using constant effective daily interest method
BONDINT - Accrued interest on a bond paying regular, periodic interest
RPICONVEXITY - Convexity of a bond paying regular periodic interest
RPIDURATION - Duration of a bond paying regular periodic interest
RPIMDURATION - Modified duration of a bond paying regular period interest