Logo

SQL Server LUdecompN_q Function

Updated 2024-03-06 21:00:22.677000

Description

Use the table-value function LUdecompN_q to calculate the LU factorization of an N x N matrix A in 3rd normal form using partial pivoting. LUdecompN_q returns a lower triangular matrix L, an upper triangular matrix U, and a permutation matrix P such that,

    LU = PA

For a 3 x 3 matrix this becomes:

P\times\begin{bmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{bmatrix}=\begin{bmatrix}l_{11}&0&0\\l_{21}&l_{22}&0\\l_{31}&l_{32}&l_{33}\end{bmatrix}\begin{bmatrix}u_{11}&u_{12}&u_{13}\\0&u_{22}&u_{23}\\0&0&u_{33}\end{bmatrix}

Syntax

SELECT * FROM [westclintech].[wct].[LUdecompN_q](
   <@Matrix_RangeQuery, nvarchar(max),>)

Arguments

@Matrix_RangeQuery

the SELECT statement, as text, used to determine the square (N x N) matrix to be used in this function. The SELECT statement specifies the column names from the table or view or can be used to enter the matrix values directly. Data returned from the @Matrix_RangeQuery select must be of the type float or of a type that implicitly converts to float.

Return Type

table

colNamecolDatatypecolDesc
RowNumintThe zero-based row index for the matrix
ColNumintThe zero-based column index for the matrix
ItemValuefloatThe value at RowNum, ColNum
Typenvarchar(4000)The pivot(P), lower triangular(L) or upper triangular (U) matrix type

Remarks

The number of columns in the matrix must be equal to the number of rows or an error will be returned.

Use the LUdecompN function for simpler queries.

Use LUdecomp_q for a table not in third-normal form.

The function returns an error if the array contains a non-numeric value.

The returned Type column contains 'L', 'U', or 'P'

Examples

In this example, we calculate the LU decomposition directly from the SELECT statement.

SELECT *
FROM wct.LUdecompN_q('
   SELECT
       *
   FROM (VALUES
       (0,0,0.002),
       (0,1,1.231),
       (0,2,2.471),
       (1,0,1.196),
      (1,1,3.165),
       (1,2,2.54),
       (2,0,1.475),
       (2,1,4.271),
       (2,2,2.142)
       ) m(r,c,x)');

This produces the following result.

RowNumColNumValueType
001L
010L
020L
100.00167224080267559L
111L
120L
201.23327759197324L
210.299970803835884L
221L
001.196U
013.165U
022.54U
100U
111.22570735785953U
122.4667525083612U
200U
210U
22-1.73047881640933U
000P
011P
020P
101P
110P
120P
200P
210P
221P

Note that the results are returned in third-normal form. If we wanted to a more traditional (de-normalized) presentation of the results, we can us the PIVOT function.

SELECT Type,
       [0],
       [1],
       [2]
FROM
(
    SELECT *
    FROM wct.LUdecompN_q('
   SELECT
       *
   FROM (VALUES
       (0,0,0.002),
       (0,1,1.231),
       (0,2,2.471),
       (1,0,1.196),
       (1,1,3.165),
       (1,2,2.54),
       (2,0,1.475),
       (2,1,4.271),
       (2,2,2.142)
       ) m(r,c,x)')
) d
PIVOT
(
    SUM(Value)
    FOR ColNum in ([0], [1], [2])
) p;

This produces the following result.

Type012
L100
L0.0016722408026755910
L1.233277591973240.2999708038358841
P010
P100
P001
U1.1963.1652.54
U01.225707357859532.4667525083612
U00-1.73047881640933

In this example, we demonstrate how to reconstruct the input matrix using the calculation P'LU.

SELECT k.*
FROM
(
    SELECT Type as MatrixType,
           wct.NMATRIX2STRING(RowNum, ColNum, Value) as Matrix
    FROM wct.LUdecompN_q('
   SELECT
       *
   FROM (VALUES
       (0,0,0.002),
       (0,1,1.231),
       (0,2,2.471),
       (1,0,1.196),
       (1,1,3.165),
       (1,2,2.54),
       (2,0,1.475),
       (2,1,4.271),
       (2,2,2.142)
       ) m(r,c,x)')
    GROUP BY Type
) p
PIVOT
(
    MAX(Matrix)
    FOR MatrixType IN (L, P, U)
) d
    CROSS APPLY wct.MATRIX(wct.MATMULT(wct.TRANSPOSE(P), wct.MATMULT(L, U))) K;

This produces the following result.

RowNumColNumItemValue
000.00200000000000001
011.231
022.471
101.196
113.165
122.54
201.475
214.27099999999998
222.14199999999999

This example demonstrates how to use the function by selecting data from a table.

SELECT *
INTO #A
FROM
(
    VALUES
        (0, 0, 0.002),
        (0, 1, 1.231),
        (0, 2, 2.471),
        (1, 0, 1.196),
        (1, 1, 3.165),
        (1, 2, 2.54),
        (2, 0, 1.475),
        (2, 1, 4.271),
        (2, 2, 2.142)
) m (r, c, x);
SELECT *
FROM wct.LUdecompN_q('SELECT r,c,x FROM #A');

This produces the following result.

     RowNum      ColNum                  Value Type
----------- ----------- ---------------------- ----
          0           0                      1 L
          0           1                      0 L
          0           2                      0 L
          1           0    0.00167224080267559 L
          1           1                      1 L
          1           2                      0 L
          2           0       1.23327759197324 L
          2           1      0.299970803835884 L
          2           2                      1 L
          0           0                  1.196 U
          0           1                  3.165 U
          0           2                   2.54 U
          1           0                      0 U
          1           1       1.22570735785953 U
          1           2        2.4667525083612 U
          2           0                      0 U
          2           1                      0 U
          2           2      -1.73047881640933 U
          0           0                      0 P
          0           1                      1 P
          0           2                      0 P
          1           0                      1 P
          1           1                      0 P
          1           2                      0 P
          2           0                      0 P
          2           1                      0 P
          2           2                      1 P

See Also

LU - LU factorization with partial pivoting

LUDECOMP - Calculate the LU factorization of an N x N matrix using partial pivoting.

LUDECOMP_Q - Calculate the LU factorization of an N x N matrix using partial pivoting.

LUDECOMPN - Calculate the LU factorization of an N x N matrix using partial pivoting.

QRDECOMP - Decompose a de-normalized N x N matrix A into the product of an upper triangular matrix R and an orthogonal matrix Q, such that A = QR.